A Novel Vehicle Classification Model for Urban Traffic Surveillance Using the Deep Neural Network Model

نویسندگان

  • Kamini Goyal
  • Dapinder Kaur
چکیده

The vehicle detection is the backbone of the urban surveillance systems, which is used to obtain and identify the various statistics of the urban vehicular mobility. Also the urban surveillance systems are used for the vehicle tracking or vehicular object classification. The proposed model has been designed for the purpose of the urban surveillance and vehicular modelling of the traffic. The proposed model has been designed for the vehicle position identification as well as the vehicle type classification using the deep neural network. The proposed model has been tested with a standard dataset image for the result evaluation. The experimental results has been shown the effectiveness of the proposed model, where the proposed model has been found successful in detection and classification of all of the vehicles in the given image.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Mixture Model and Deep Neural Network based Vehicle Detection and Classification

The exponential rise in the demand of vision based traffic surveillance systems have motivated academia-industries to develop optimal vehicle detection and classification scheme. In this paper, an adaptive learning rate based Gaussian mixture model (GMM) algorithm has been developed for background subtraction of multilane traffic data. Here, vehicle rear information and road dash-markings have ...

متن کامل

Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence

Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....

متن کامل

Automated Vehicle Detection and Classification with Probabilistic Neural Network

The number of vehicles in the urban areas is rising at high pace. The critical issues are arising with the rise in the number of vehicles for the traffic analysis. The analysis of the vehicle running across the roads is usually done for the density analysis, traffic shaping and many other similar applications. The vehicle detection in the rushed areas produces the real challenge of independent ...

متن کامل

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation

The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016